Chromaticity jump test at injection

Christoph Montag

January 25, 2008

Outline of the experiment

- ullet Changing the γ_t -quad polarity at injection results in a chromaticity jump
- The jump can be controlled by setting the sextupoles (four families per arc) differently
- This works beautifully in the model
- Does the actual machine match the model?
- ightarrow Observe chromaticities in model and machine simultaneously

Five steps:

- 1. Regular sextupole settings, γ_t -quads in "+" polarity
- 2. Regular sextupole settings, γ_t -quads in "-" polarity
- 3. Modified sextupole settings, γ_t -quads in "-" polarity
- 4. Modified sextupole settings, γ_t -quads in "+" polarity
- 5. Regular sextupole settings, γ_t -quads in "+" polarity (=Step 1)

Note: Step 3 to 4 corresponds to a "backwards" chromaticity jump

Vertical chromaticity during the experiment

→ Nice agreement between measurements and model

Horizontal chromaticity during the experiment

 \rightarrow Clear discrepancy for Step 3

Vertical chromaticity jump

Model: vertical chromaticity jump gets reduced by 0.8 units

Measurement: vertical chromaticity jump gets 0.7 units smaller with modified sextupoles

→ "perfect" agreement!

Horizontal chromaticity jump

Model: horizontal chromaticity jump gets 3.0 units smaller Measurement: horizontal chromaticity jump gets 1.4 units smaller with modified sextupoles

→ factor 2 discrepancy